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The above mentioned proof1 contains a subt le circular argument, which is

rather common in the literature ; it can, for example , also be found in [3)2, A

few comments are therefore in order.

The authors consider a linear stochastic system with time delays having

state process x, input (contro l)process u and output process z. (The fact

that there are time delays in the system is not important here.) The problem

is to devise a nonrandom feedback loop

u(t) = lr(t,z(s); 0 < s < t)

so that the resulting feedback equations have a unique solution and a quadratic

criterion is minimized. To emphasize the dependence of x and z on the con-

trol process u, we shall here write x
~ 

and z~ . Using the transition matrix ,

the state equation can be integrated to attain the form

ft
x
~

(t) = x
0( t )  + J K(t ,s)u(s)  ds

J O
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where K is a matrix kernel and the index o indicates that no control is

applied . Given any two controls u and v, define

~uiv
(5It2J = E~x (s) z (r); 0 � T < t ) .

The proof1 is based on a simple completion-of-the-square argument adapted

from [3) which requires that , for all $ � t , the estimation error

= x
~
(s) - 2uiu (~~

t)

is independent of the choice of control signal u. The proof of this fact,

however, is based on the assumpt ion that

~~i~
(sIt) = ~010 (sIt) + J K(s t )u ( T) dT

for s � t (where is the estimate obtained when there is no control),

which in turn is equivalent to being independent of the control, thus

closing the circle. In fact , a priori we know only that

~~,11 (sIt) = 
~o,~

(sIt) + K( s ,T)u(T) dT,

and to show that = 

~o)o 
we must first prove that the sigma-fields Z~

generated by {z (r); 0 < ‘r < t) for each t are independent of the choice of

control law .

This is by no mean s a trivial question . The control dependence can be

eliminated by applying the Cirsanov transformation, but this implies that the

solut ion of the resul t ing system equations exists only in a weak sense, and con-

sequently some of the physical meaning of the feedback problem is lost. Hence

we shall only consider strong solutions. As explained in [10], this requires

some care in defining the class of admissible control laws .

There are several ways to modify the note’ so that the proof becomes correct.

The simplest is to allow only linear feedback laws , i.e., ‘it belonging to the

class L defined by

- ______
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lr (t , z )  = fit ) + J F(t ,s) dz ( s ) ,
0 H

where f is a vector function and F a matrix function, both square-integrable .

It is not hard to prove [10] that the sigma-fields ~Z~) are constant in this

case.

Although the candidate 11* for optimal control law (see equ. 4 in the note1)

belongs to L , we usually want to know how it compares with nonlinear feedback

controls. As in [11], to insure the sigma-field constancy, we can require that

it be a Lipschitz continuous function of the sample functions of z, but we must

realize that L is not contained in this class of control laws, the controls of H
L not being defined samplewise unless the functions s 1÷ F(t,s) have bounded

variation . Hence we must impose some technical assumptions to insure that ‘irk

is admissible.

A more exhaustive class of nonlinear feedback controls can be defined by

first observing that the sigma-field constancy problem does not occur when there

is a positive delay in the feedback loop, i.e., the control law ‘ir is of the

form

u(t) = rr(t ,z(s); 0 � s � t - c)

where c > 0, and then noting that properly defined limits of such ‘it will also

do. (The limit in probability of a sequence of random vectors will retain the

measurability property of the sequence.)

Finally, in the proof1 it is necessary to assume that the system is Gaussian ,

i.e., that the driving noises and the initial conditions are (jointly) Gaussian;

otherwise the estimates will not be linear in the data as required. If

all conditional expectations are replaced by wide sense conditional expectations ,

the Gaussian assumption can be dispensed with provided that the analysis is

restricted to the linear class L; this will not work for nonlinear control laws .

Removing the Gaussian condition in the general case will lead to nonlinear fil-

tering. Formally the optimal solution will he the same function of the state 
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estimate ~ as in the Gaussian case , hut it will probabily he hard to show

that the corresponding feedback law it is admissible , i.e., that the feedback

system has a unique (strong) solut ion and that the sigma-fields {Z~ } are

Constant .


